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Abstract— Fiducial markers are important tools for robotic
navigation and imaging, enabling accurate localization and
tracking of objects in challenging environments. In this paper,
we present AcTag, a new fiducial marker design for use
underwater with imaging sonar and cameras, as well as a
method for the detection of AcTags within acoustic images.
High amounts of noise and a nonlinear projection model make
it difficult to use imaging sonar in autonomous localization
and mapping. In order to expand the use of imaging sonar
in autonomous underwater vehicles, our marker design and
detection algorithm for sonar images facilitate the identification
of four unique landmarks per tag, and provide relative range
and azimuth values to each landmark. We evaluate our marker
and detection algorithm with simulated and real-world sonar
data, reporting on the false positive and true positive rates,
as well as the estimated error for the range and azimuth
estimates per landmark. We also release an open-source library
for generating tag families and detecting the tags.

I. INTRODUCTION

Fiducial markers, like AprilTags, AruCo markers, and
ARTags [1–3] are widely used in robotics and computer
vision for automated vision-based tasks such as localization,
mapping, and target tracking. Common detection algorithms
are able to uniquely identify the tag and return its pose with
respect to the sensor [4, 5]. In underwater environments the
use of vision-based detection is limited by environmental
factors such as water turbidity and reduced light levels.
Those factors greatly impact the effective range and clarity
of images, though visual markers still have use in marine
environments [6, 7].

Acoustic sensors operate differently than cameras as the
former measure returns from sound waves, while the latter
measure light. Sound is able to travel for much longer
distances and is relatively unaffected by turbidity, allowing
sonar to operate in more diverse underwater conditions
than cameras. However, standard visual fiducial markers are
undetectable by acoustic sensors, and few fiducial markers
designed for acoustic sensors exist.

Wang et al. and Lee et al. have designed artificial land-
marks for underwater use [8, 9] that have been used within
controlled environments. However, to the best of the authors’
knowledge, there are not yet any well-defined markers that
can easily be used in unstructured environments or condi-
tions. Markers that can be quickly produced, easily deployed,
and detected by imaging sonar would facilitate research
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Fig. 1: Hovering Autonomous Underwater Vehicle (AUV) in water with an
AcTag, a novel opti-acoustic fiducial marker that can be detected in both
optical and acoustic images. Examples of acoustic and optical output of
tag detection are also shown. Simultaneous detection with both camera and
sonar is not always possible, so the camera and sonar views shown are from
two different positions of the AUV.

in underwater localization and mapping with autonomous
underwater vehicles (AUVs).

In this work we propose a marker design, that we call
AcTag, that can be detected in both optical and acoustic
images, as seen in Fig. 1, and an algorithm for autonomous
detection in sonar imagery. The proposed algorithm is able to
uniquely identify a tag under noisy conditions and provides
range and azimuth measurements to the four unique corners.
The design allows for the generation of large families of
unique markers, similar to the aforementioned visual fiducial
markers. The main contributions of this paper include:

1) A novel opti-acoustic fiducial marker for underwater
robotic localization and mapping, with instructions for
manufacturing them.

2) A tag family generation script modified from AprilTag
3 [1] to account for bit pattern reversal effects that
occur as a result of the imaging sonar projection model.

3) A novel method for detection and identification of our
marker in an acoustic image, resulting in range and
azimuth measurements of the four uniquely identifiable
corners of the tag.

4) An open-source library that includes both tag family



generation and tag detection functionality, found at
https://bitbucket.org/frostlab/actag.

The rest of the paper proceeds as follows: Section II covers
related works and their relation to our proposed tag design
and detection method. We then cover the sonar projection
model, and provide a detailed description of the tag design
and construction in Section III. Tag family generation is
covered in IV, followed by the details of our tag detection
and decoding algorithm in Section V. An evaluation of our
design and detection algorithm is presented in Section VI,
using both simulated and real-world data. Lastly, Section VII
outlines our conclusions, and potential future applications
and developments that can be made.

II. RELATED WORK

The most closely related tag to our work is the AprilTag [1,
10, 11]. AprilTags are an open-source optical fiducial marker
that have found widespread use in the area of robotics, with
a robust and easy-to-use detection library. The AprilTag 3
library provides a means of generating custom tag families
where the user can specify the data bits, minimum hamming
distance, and layout. In 2015, Cesar et al. [6] found that
AprilTags outperformed other common visual markers when
used underwater in conditions where a camera could view the
markers. A similar study was performed in air by Kalaitzakis
et al. [4], with similar results, where AprilTags generally
outperformed other tag designs in optical imagery. We frame
the design of our tag families to match AprilTag, so that the
existing AprilTag detection library can be used when the tags
are observed using optical cameras.

There are two main contributors to the development of
acoustic fiducial markers that we have identified. Wang et
al. developed the ACMarker [8], which allows for 5 degree
of freedom (DOF) pose estimates between the tag and
the sensor. However, their pose estimate requires a fairly
controlled environment, the marker is made up of large
blocks of concrete, and the sensor placement relative to
the marker is quite limited. Lee et al. developed another
type of acoustic marker and used it in an extended Kalman
filter (EKF) localization solution [9] for underwater vehicles.
However, their markers are not clearly described, and rely on
multiple views [12] for reliable detection.

Other opti-acoustic landmarks have been used for inter-
sensor calibration, like the work presented by Yang et al.
[13], where they put a large number of visual fiducial markers
and magnets onto a single board. While effective for inter-
sensor calibration, such boards are large, expensive, and lack
the benefits that come from having more than one unique
marker. Another difficulty is highlighted in the opti-acoustic
calibration work by Lindzey et al [14], where they had to
manually label points in the acoustic imagery. Additional
efforts to create landmarks for optical and acoustic detection
include that of Lagudi et al., where they used a checkerboard
and metal rods wrapped in bubble wrap [15]; Raaj et al. used
carefully placed buoys [16]; and Marburg et al. employed
a wire-frame metal sphere [17]. All of the aforementioned
methods are impressive, and effective in their own rights,
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Fig. 2: Imaging sonar coordinate frame and projection model. pw is an
example of a point in the world that is observed by the sonar. Range, r,
and azimuth, θ, information are preserved but the elevation, ϕ, is projected
onto the range and azimuth plane. The projected point from pw is ps.

but lack the freedom provided by a large group of unique
markers. Additionally, these solutions are often difficult to
construct, especially if more than one marker is desired.

An impressive use of an opti-acoustic marker is found
in the work of Negahdaripour et al. where they are able
to estimate motion over time, and structure from motion
[18, 19]. The features used in their work are not uniquely
identifiable, and higher accuracy estimates rely on a large
baseline between two views from the sensors. However,
their work leverages a very simple board with holes drilled
through it. Our markers are not as simple as their board, but
provide much more information from a single view.

In this study we build upon these works by proposing a
new fiducial marker system that combines visual and acoustic
markers to enable accurate localization and mapping in
underwater environments. Our system leverages the strengths
of both visual and acoustic sensing, and provides a flexible,
relatively low-cost, and scalable solution for underwater
navigation. Detection of our markers does not rely on any
manual labelling, and only a single view is necessary to
obtain multiple unique landmarks.

III. PHYSICAL TAG DESIGN

A. Sonar Operation and Projection Model

Imaging sonar operates by emitting sound waves into
the environment, and then measuring the sound waves that
are reflected back to the sensor by the environment. Range
information is estimated via time-of-flight, while bearing is
measured via beamforming using an array of hydrophones
to estimate the azimuth angle of return. Treating this as
a spherical coordinate system, range and azimuth are pre-
served, while elevation is lost. Everything above or below
the range-azimuth plane is projected onto the plane, along
the elevation arc, as shown in Fig. 2. The resulting two-
dimensional image encodes the accumulated intensity of
returns at each range/azimuth cell within the field of view
of the sensor [20]. Some sonars are designed to have very
narrow vertical apertures, minimizing the effects of this
projection. These sonars are often referred to as profiling

https://bitbucket.org/frostlab/actag


(a) Physical Tag (b) Pixel Layout

Fig. 3: AcTag construction and layout. (a) A physical AcTag. The first and
third (not visible) layers are 1 mm of aluminum, of alloys 5052 or 6063,
and the second layer is 12 mm of acoustic foam. (b) The layout string for
a 24 data bit tag family overlaid onto an example tag. ’d’ denotes a data
bit, ’k’ a black bit, and ’w’ a white bit.

sonars and are typically very expensive. In this paper we
focus on imaging sonars that have a non-negligible vertical
aperture.

In this paper we represent points in the sonar’s frame with
a spherical coordinate system, (r, θ, ϕ), where r is the range
in meters, θ the azimuth in radians, and ϕ the elevation
in radians. Given the minimum and maximum range values
(rmin and rmax) in meters, vertical aperture (v) in degrees,
and horizontal aperture (h) in degrees, the limits of the
sonar’s field of view can be described by
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noting that the elevation values are centered around π
2 .

Converting from spherical coordinates to a Cartesian co-
ordinate system, (x, y, z), can be done withxy

z

 =

r sinϕ cos θ
r sinϕ sin θ
r cosϕ

 . (2)

When using sonar to identify the relative position of items
in the environment, range and azimuth are preserved while
elevation is lost in the projection to a sonar image.

Given a point in the sonar’s frame in Cartesian coordinates,
(xw, yw, zw) we can project it to a point in the polar plane
of the sonar, (rs, θs) with the following equation[

rs
θs

]
=

[√
x2
w + y2w + z2w

arctan 2(yw, xw)

]
(3)

To generate a sonar image we then convert into image
coordinates, (xs, ys), via[

xs

ys

]
=

[
rs cos θs
rs sin θs

]
, (4)

and bin xs and ys into image pixel coordinates, which we
refer to as (us, vs). Usually, the top left corner of the sonar
image corresponds to the furthest range and largest negative
azimuth angle and rows correspond to range and columns to
azimuth.

B. Tag Construction

The values encoded in a sonar image are the intensities at
each range and azimuth of the return of the sound wave that
was transmitted. The two main properties of materials that
affect the intensity of a return when they are hit by a sound
wave are 1) reflectivity, and 2) scattering coefficient. An easy
assumption to make is that a very smooth surface is reflective
and only generates high intensity values when the surface is
perpendicular to the oncoming sound wave. On the other
hand, rough surfaces tend to scatter the sound, and result in
higher intensity returns to the sonar even when the surface
is not perpendicular to the sound wave. This combination
of smooth and rough materials can be seen in other works
that have designed surfaces that are visible in imaging sonar
output [8, 9, 12].

We wanted our markers to be detectable by both optical
and acoustic sensors, but also to be relatively affordable and
straightforward to construct. Additionally, we wanted them
to be light enough to deploy and retrieve easily in real-world
environments without any specialized equipment.

We found that by layering thin sheets of metal and foam,
we are able to meet these requirements. For our tags we used
a back plate of 1 mm thick aluminum to provide structural
integrity and weight, a 12 mm thick layer of acoustic foam to
scatter sound waves, and a face plate from the same material
as the back plate with the tag ID pattern cut out of the metal.
Four screws, with standoffs inside of the foam to maintain its
shape, are used to attach the three layers together. Depending
on the size of the tag, the buoyancy of the tag may need to
be counteracted with additional weight.

The markers are rigid, but lightweight, and the screws
through the back provide a great location to attach fishing
line or other attachments that facilitate deployment and
retrieval. In one use case we found that by tying small buoys
to each marker we could easily identify their location within
murky water. A visual of our tag design can be seen in
Fig. 3(a). Within acoustic images the foam will return high
intensity values, while the metal will result in low intensity
returns. Optical detection is possible due to the contrast
between the foam and metal. Additional details on the optical
and acoustic detection are found in Section V.

When buying materials in bulk the average cost of a single
AcTag is around $25 US dollars, at the time of writing. Al-
though production of our tags is more involved and expensive
than visual fiducial markers, we believe that we’ve identified
a means of constructing them that is straightforward, and
relatively affordable for most use cases. Detailed information
on the materials, costs, and assembly of AcTags can be found
within our open-source library.

IV. TAG FAMILY GENERATION

In order to use multiple tags simultaneously it is important
to have many unique IDs. The layout shown in Fig. 3(b)
demonstrates the necessary parts of our tag families. Each
tag contains a center square of white pixels, surrounded by a
single layer of black pixels. The data bits then form a single
pixel wide layer around the outer edge. Our tag families are



Algorithm 1: Single Image Tag Detection
Data: Raw sonar image
Result: Range and azimuth of the four tag corners

1 img ≜ input;
2 filt = median filter(img);
3 bnry = adaptive threshold(filt);
4 ctrs = identify contours(bnry);
5 quad = fit quadrilaterals(ctrs);
6 [rng, azi] = identify tags(quad);

modified versions of AprilTag 3 families such that every tag
falls within these constraints.

Within this framework, tag families are specified by the
number of data bits and the minimum hamming distance
between tags in the family. An example tag family with 24
data bits and a hamming distance of 10 would be named:
”AcTag24h10”.

Given the similarities with AprilTag, we modified their
tag family generation script to ensure a proper hamming
distance and bit layout for AcTags. In decoding, the data bits
for a tag are traversed in a clockwise order. To ensure the
minimum hamming distance for optically detected AprilTags,
it is necessary to check for four main offsets in rotation of
the tag. In sonar images it is also necessary to check for
a reversal in the order of the data bits due to mirroring.
Mirroring occurs over the polar plane in the sonar projection
model, such that a tag that is above the sonar can be mirrored
across the plane, and a tag in the mirrored position will
project onto the same location in the image. To prevent
confusion, our tags are single sided, so rather than have
the tags in these two positions project the exact same bit
ordering, in one position the data bits will be in a clockwise
ordering around the tag, while in the other position they will
have a counter-clockwise ordering. As a result, an AcTag
family will contain fewer tags than an AprilTag family with
the same data bit and hamming distance specifications.

Our tag families also differ from AprilTag 3 in that
our layout is constrained to what is described in the first
paragraph of this section. While AprilTags can have data
bits on the interior, the solid white interior of our tag aids in
acoustic detection. The other constraint of a single layer of
data bits simplifies construction, allowing the face plate to
be a solid piece of metal. The one exception that can occur
within our tag families is when there is a single black data
bit in the corner, requiring just a little bit of extra metal to
connect that data bit to the rest of the metal face plate.

V. TAG DETECTION

Camera detection of our markers is clearly described in
the AprilTag papers [1, 11], and we refer the reader to
their works for details on how to use their library. The only
precursors to using their library with our tags is to build
their detection library with the proper AcTag family and to
invert the colors of the gray scale image. This inversion is
necessary because the metal is lighter in color than the foam,

so the tag colors in an optical image are the opposite of those
found in an acoustic image. While this could be resolved
with paint, that would modify the acoustic properties of the
materials and complicate tag assembly. The simplest solution
we found is to invert the colors prior to optical detection.

Detection of a tag in the image from an imaging sonar is
broken down into the main steps highlighted in Algorithm
1, and outputs from each step are shown in Fig. 4. Given
the raw data, we treat the image as a 2D image in Euclidean
space with the underlying assumption that straight lines in
3D space can be approximated by straight lines in the 2D
polar image [21]. This assumption does not hold well as the
tag gets close to the sonar, but the limited field of view of an
imaging sonar often prevents the tag from being fully visible
at close range.

In the following subsections we denote images with x and
y, being inputs and outputs respectively, and their values at
row i and column j as xi,j or yi,j .

A. Median Filter

In order to remove some of the noise while retaining edges
in the sonar image, we use a median filter. An example of
the output of the median filter is shown in Fig. 4(b).

A neighborhood of pixel values around xi,j is defined as

N [xi,j ] = [xi−R,j−R, · · · , xi−R,j+R,

xi−R+1,j−R, · · · , xi+R,j+R]
(5)

where N [xi,j ] is the neighborhood, and R is the specified
radius of the neighborhood. The median filter then calculates
the output values as

yi,j = median(N [xi,j ]), (6)

where yi,j is the output pixel value.
While simple, the filter is quite effective and has found

use in other recent imaging sonar applications [8, 22].

B. Adaptive Threshold

The filtered image is then binarized through the use of an
adaptive threshold, an example of which is in Fig. 4(c).

The threshold value for each pixel is set through

T [xi,j ] =
min(N [xi,j ]) + max(N [xi,j ])

2
−O, (7)

where O is an offset value that can be specified by the user
to raise or lower the threshold across the whole image. The
output value is then determined through

yi,j =

{
0, if xi,j < T[xi,j ]

1, if xi,j ≥ T [xi,j ]
(8)



(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4: AcTag sonar image detection algorithm breakdown. (a) The raw sonar image, in polar coordinates. (b) Median filter output, in Cartesian coordinates.
(c) Adaptive threshold binary output. (d) All possible contours in the image. (e) Filtered contours, leveraging range and bearing from the sonar to exclude
contours whose area was too large or small to be a tag. (f) Quadrilaterals that were successfully fit onto some of the contours. (g) Zoomed in view, showing
sampling locations for estimated data bits around the quad to determine each data bit’s value. Note that our algorithm uses the binary image (instead of
the filtered image depicted above) for sampling values. (h) Decoded tag ID and corners overlaid on the original image.

Algorithm Parameter Value
median filter radius 4

adaptive threshold radius 8
adaptive threshold offset 1

quadrilaterals desired inlier percentage 0.85
quadrilaterals inlier distance 2.5

TABLE I: Algorithm parameters used in evaluation

C. Contour Identification

To identify contours in the image we take the binary output
and use a modified version of the algorithm described by
Haig et. al. in 1992 [23]. We only care about white shapes
that are surrounded by black. As seen in Fig. 4(d), we are
able to clearly identify both white shapes surrounded by
black, and black shapes surrounded by white. Removing
the black shapes surrounded by white results in far fewer
contours to consider. Due to the fact that range information
is returned by the sonar, additional contour rejection can be
performed by calculating the estimated area of a contour.
Leveraging the known range and azimuth resolutions, we
can approximate the surface area that the shape occupies. If
the area is obviously too small or too large to be our tag,
then we can disregard the contour. The result after applying
both contour rejection methods is seen in Fig. 4(e).

D. Fitting Quadrilaterals

After contour identification and early rejection, we attempt
to fit a quadrilateral to each of the remaining contours. We
implement a custom RANSAC [24] algorithm that attempts
to fit four lines to the shape, and then determines the number
of inliers and whether or not the shape defined by the inter-
sections of those lines is a valid parallelogram. The distance
for a point to be considered an inlier can be set by the user,

as well as the desired inlier percentage. Algorithm 2 outlines
the main steps for fitting a quadrilateral to a single contour.
If a potential quad is found to have enough inliers to be
considered a good fit, the RANSAC function will terminate
with a successful fit. We then refine the corner estimates
by individually considering each of the four line segments
formed by the corners, fitting a new line to the inliers that
correspond to that line segment, and then recalculating all of
the corners of the quadrilateral. Any refined quadrilateral that
is also a parallelogram is then returned by the function for
consideration in tag identification. An example that shows the
corner locations for the quadrilaterals that were successfully
fit to contours is seen in Fig. 4(f).

E. Tag Identification

Using the corners of the quadrilaterals, the known size of
the tag, and the known number of data bits around the outside
edge of the tag, we then identify the pixel at the center of
where each data bit should be, as shown in Fig. 4(g). The
binary values of the data bits are determined by sampling the
binary image at those locations. The bit values are stored in
a list in clockwise order and compared to the values in the
look up table for the tag family. If a match is found then
we obtain the tag ID and are able to pinpoint the order of
the corners of the tag in the image, with Fig. 4(h) showing
a successful tag detection in a sonar image. The allowable
number of bit corrections is user specified and is limited
by the hamming distance used in tag family generation. The
minimum bit correction value is 0, and the maximum is either
(hamming dist/2)−1 or floor(hamming dist/2) for even
and odd values of hamming dist respectively.

In the end, four unique point landmarks are clearly iden-



Algorithm 2: Fit Quad to Contour
Data: List of image coordinates in contour, c
Result: Four corners of the quadrilateral

1 T ≜ max attempts;
2 N ≜ inlier percentage threshold;
3 l ≜ parameters for each line;
4 while attempts < T do
5 cs ≜ subset of contour points;
6 n ≜ number of inliers;
7 cs = c;
8 n = 0;
9 for i = 0 to 4 do

10 pts = pick random point group(cs);
11 l[i] = fit line to points(pts);
12 n = determine inliers(cs, l[i]) +n;
13 cs = trim inliers from contour(c);

14 corners = find intersections of lines(l);
15 n = recalculate inliers(corners, c);
16 if n/len(c) > N then
17 corners = refine corners(corners, c);
18 if corners is parallelogram then
19 return corners

tified, with observed range and azimuth values for each.

VI. EVALUATION

In this paper we focus on evaluation of acoustic detection
as this is the novel contribution of our tag design. The tag
fits within the definition provided by AprilTag 3 [1]. When
the tag can be detected by a camera we have no reason to
believe that its performance and use cases will differ from
the results obtained by other researchers [6, 7].

In order to evaluate the performance of our acoustic
detection algorithm we have collected both real-world and
simulated data. By observing the tags with multiple different
sonars at their respective frequencies we are able to identify
the frequency range in which our tag is visible. With sim-
ulated data we are able to compare the range and bearing
estimates for each point with the ground truth and determine
approximate error distributions. Lastly, with real-world data
sets we evaluate the false positive and true positive rates of
our detection algorithm.

For all of our results we ran the tag detection with the
parameters found in Table I.

For the false and true positive results we used a Blueprint
Subsea Oculus m1200d set to a frequency of 2.1 MHz with a
minimum range of 0.1 meters, a maximum range that varied
between 3 and 6 meters, a horizontal aperture of 60 degrees,
and vertical aperture of 12 degrees. Our simulated results
were set to use the same sonar parameters as the false and
true positives, with two exceptions: the maximum range was
set to 5 meters, and there was no parameter for operating
frequency.

750kHz 600kHz 1.2MHz

1.2MHz 1.6kHz 2.1MHz

(a) (b) (c)

Fig. 5: AcTag viewed by three different sonars and in their respective low
and high frequency modes. (a) is from a Blueprint Subsea Oculus m750d, (b)
is a sidescan sonar, and (c) is a Blueprint Subsea Oculus m1200d. The tag
design is difficult to view in sidescan imagery, though it still demonstrates
the frequencies that can be used to detect the tag more clearly.

A. Frequency Analysis

Material properties vary with frequency, meaning that
our tag will not look the same to every sonar, as they
may operate over a broad frequency spectrum. We were
able to test the visibility of our tag construction with a
Blueprint Subsea m750d imaging sonar, a sidescan sonar,
and a Blueprint Subsea m1200d imaging sonar. Each of these
were equipped with a low and high frequency mode, with
the lowest and highest frequencies being 600 kHz and 2.1
MHz, respectively. From the results that can be seen in Fig.
5, we determined that the tag is visible between 1.2 and
2.1 MHz, with the possibility of being visible beyond 2.1
MHz. The proposed detection algorithm in this paper does
not work in sidescan imagery, where only range information
is gathered and must be stitched together over time to get
an image like the one shown in Fig. 5(b). However, we
include sidescan output here because it was useful for testing
additional frequencies not sampled by our imaging sonars.

B. Error Distributions from Simulation

Using the HoloOcean simulator [25, 26], we created a
simulated tag and used a simulated AUV equipped with an
imaging sonar in order to approximate error distributions. A
visualization of the simulation environment can be seen in
Fig. 6(a). While HoloOcean does not have a built in asset
for our tags, we were able to approximate one by creating
an object in the shape of a tag with occupied and unoc-
cupied pixels, where the occupied pixels represented foam,
and the unoccupied ones represented metal. The simulation
parameters were tuned by visually comparing a simulated
and real-world image, with a visual comparison found in
Fig. 6. Given the differences between our simulated tag and
a real tag, we did not feel it appropriate to evaluate the
true and false positive rates within simulation. However, the
simulated images reasonably approximate the noise found
in real-world images, allowing us to approximate the error
in the final range and azimuth results in images where a
tag was detected. The error is computed by comparing the



HoloOcean Simulation Simulated Sonar Image Real Sonar Image

(a) (b) (c)

Fig. 6: Comparison of the HoloOcean simulation to real-world sonar
imagery. (a) The HoloOcean environment, which consists of an AUV and
an AcTag. (b) The tag within a simulated sonar image, while (c) A tag
within a real-world sonar image.

algorithm’s output to the ground truth that is readily available
in simulation with the known tag and sonar pose.

Results were obtained by randomly moving the sonar to a
position within 5 meters of the tag, ensuring that the tag
face was oriented so that it would be seen in the sonar
output. Range and azimuth estimates for the four unique
points on our tag were obtained from our detection algorithm,
and error was computed using the ground truth range and
azimuth values. Individual error distributions for the range
and azimuth can be found in Fig. 7, where both distributions
resemble a normal distribution with an approximate standard
deviation of 1 cm for the range error and around 0.005
radians for the azimuth error. We note that the azimuth
distribution is not centered at zero and is slightly skewed due
to an approximation of the atan2 function that HoloOcean
uses for azimuth calculations.

Given that these results were obtained from simulation,
as we had no other resources to provide reliable ground
truth data, these results likely fail to capture all of the error
present in real-world data. However, it does give us enough
information to assume that the error can be approximated as
a Gaussian, and overall it should be small, on the order of
centimeters for range and hundredths of a radian for azimuth.

C. False and True Positives

In order to determine the false positive rate, multiple
real-world data sets from locations including: Deer Creek
Reservoir in Utah, a swimming pool at Brigham Young
University (BYU), and our custom vinyl-lined test tank at
BYU, were composed into a single data set with 39838 total
sonar images. No tags were present in any of the images, so
a detection of any tag by the algorithm is a known false
positive. The results can be seen in Table II, where we
tested with four different tag families, each differing only in
the minimum hamming distance, and therefore the number
of total possible tags in each family. Additionally, we ran
each family through twice, once with zero allowable bit
corrections, to minimize false positives, and once with the
maximum number of bit corrections allowed for that family,
to demonstrate the worst case scenario.

Even in the worst case scenario, the false positive rate is
below 1% for all tag families that we tested, and in the best
case it is approximately 0%.

To evaluate the true positive rate, we ran the tag detection
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Fig. 7: Range and Azimuth error distributions from simulated data. Data
shown is from 1042 tag detections, or 4168 unique points, with the errors
then calculated per point. Ground truth is known in the simulation. Negative
and positive errors correspond to estimated values that are smaller and larger
than the true values, respectively. Only data for correct tag detections is
considered.

Bit
Cor. Tag Family Tags in

Family
False
Detections False Pos. Rate

1 AcTag24h4 6261 235 0.5898891 %
2 AcTag24h6 453 247 0.6200110 %
3 AcTag24h8 45 236 0.5923992 %
4 AcTag24h10 7 281 0.7053567 %
0 AcTag24h4 6261 8 0.0200813 %
0 AcTag24h8 45 2 0.0050203 %
0 AcTag24h8 45 0 0.0 %
0 AcTag24h10 7 0 0.0 %

TABLE II: False positive evaluation where tag detection was run on a data
set of 39838 images, each of which did not contain any fiducial markers.
The data set was composed of images from a tank, a recreational pool, and
Deer Creek reservoir in Utah. In the first four rows, the maximum number
of allowable bit corrections was set for each tag family used. The last four
rows correspond to no bit corrections allowed.

on a different set of data, collected at the BYU pool, that
consisted of 21228 images. Most, if not all, of the images
have a single tag in them, as it was carefully collected to keep
the tag within the field of view of the sonar. The tag was 1
ft. square and was typically between 1 and 4 meters away
from the sonar. The results are in Table III. For these results
we only considered it to be a true detection if the algorithm
found the correct tag ID within the allowed number of bit
corrections. Erroneous detections are when either the wrong
tag was identified, or an additional tag was identified in the
image. Both the count of the erroneous detections and the
true positive rates are reported in the table.

A trade-off exists between false and true positives, espe-
cially in the use of bit corrections. Allowing the maximum
number of bit corrections will result in a higher number of
true positive detections, while also increasing the number of
erroneous detections, and the false positive rate. When bit
corrections are used, the hamming distance for the family
greatly impacts the true positive rate, while having little
effect on the false positive rate. Smaller family sizes with
greater hamming distance between the tags in the family
result in the greatest chance of correct tag identification,
while retaining similar false positive rates to other families
with more tags and a smaller hamming distance.

We note that the rates reported herein depend on the tag
families used, the tag size, as well as the parameters set
within the tag detection algorithm.



Bit
Cor. Tag Family Tags in

Family Err. Det. True Det. True Pos.
Rate

1 AcTag24h4 6261 1128 4132 19.465 %
2 AcTag24h6 453 646 6801 32.038 %
3 AcTag24h8 45 547 8943 42.128 %
4 AcTag24h10 7 799 10545 49.675 %
0 AcTag24h4 6261 39 1568 7.387 %
0 AcTag24h6 453 3 1568 7.387 %
0 AcTag24h8 45 0 1568 7.387 %
0 AcTag24h10 7 1 1568 7.387 %

TABLE III: True positive evaluation where tag detection was run on a
data set of 21228 images from a recreational pool, the majority of which
contained a marker within them. In the first four rows, the maximum number
of allowable bit corrections was set for each tag family used. The last four
rows correspond to no bit corrections allowed.

VII. CONCLUSION

In conclusion, we have presented a new fiducial marker
designed to work with both cameras and imaging sonar. The
marker is constructed with a solid aluminum back, a thin
acoustic foam layer in the middle, and an aluminum front
with a unique tag ID cutout. Tag families can be generated
to include a desired number of data bits, with a required
hamming distance between each tag within the family.

We have described an algorithm for detecting the tag
in sonar images, which includes noise reduction through a
median filter, an adaptive threshold to binarize the image,
identification of contours, a custom RANSAC implemen-
tation to fit quadrilaterals to the contours, and lastly the
identification of tags within the specified tag family. Our
algorithm identifies the tag ID, orientation, and range and
azimuth for the four uniquely identifiable corners of the tag.

Our contributions include the development of a relatively
affordable and reasonably easy to make fiducial marker, a
custom tag family generator, the ability to identify four point
landmarks with known range and azimuth values relative to
the sonar’s pose, and an open-source library that contains
everything needed for tag family generation and detection.

We believe that our work has significant potential in
robotic localization and mapping in underwater environ-
ments. Our open-source library can be used by other re-
searchers and practitioners in the field. Through this, we hope
that our work will stimulate further research in this area.

A future development would be to extract a full 6 DOF
relative pose estimate, as is currently possible for visual
fiducial markers.
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